Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 470
Filtrar
1.
Biochemistry ; 63(7): 893-905, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38467020

RESUMO

Shiga toxin 2a (Stx2a) is the virulence factor of Escherichia coli (STEC), which is associated with hemolytic uremic syndrome, the leading cause of pediatric kidney failure. The A1 subunit of Stx2a (Stx2A1) binds to the conserved C-terminal domain (CTD) of the ribosomal P-stalk proteins to remove an adenine from the sarcin-ricin loop (SRL) in the 28S rRNA, inhibiting protein synthesis. There are no antidotes against Stx2a or any other ribosome-inactivating protein (RIP). The structural and functional details of the binding of Stx2A1 to the P-stalk CTD are not known. Here, we carry out a deletion analysis of the conserved P-stalk CTD and show that the last eight amino acids (P8) of the P-stalk proteins are the minimal sequence required for optimal affinity and maximal inhibitory activity against Stx2A1. We determined the first X-ray crystal structure of Stx2A1 alone and in complex with P8 and identified the exact binding site. The C-terminal aspartic acid of the P-stalk CTD serves as an anchor, forming key contacts with the conserved arginine residues at the P-stalk binding pocket of Stx2A1. Although the ricin A subunit (RTA) binds to the P-stalk CTD, the last aspartic acid is more critical for the interaction with Stx2A1, indicating that RIPs differ in their requirements for the P-stalk. These results demonstrate that the catalytic activity of Stx2A1 is inhibited by blocking its interactions with the P-stalk, providing evidence that P-stalk binding is an essential first step in the recruitment of Stx2A1 to the SRL for depurination.


Assuntos
Ricina , Toxina Shiga II , Humanos , Criança , Toxina Shiga II/análise , Toxina Shiga II/metabolismo , Ribossomos/metabolismo , Ricina/química , Ricina/genética , Ricina/metabolismo , Ácido Aspártico , Sítios de Ligação , Peptídeos/metabolismo , Escherichia coli/metabolismo
2.
Biochemistry (Mosc) ; 88(11): 1956-1969, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105212

RESUMO

Euphorbiaceae, also known as the spurge family, is a large group of flowering plants. Despite being tropical natives, they are now widespread. Due to its medicinal and commercial importance, this family of plants attracted a lot of attention in the scientific community. The distinctive characteristic of the family is production of milky latex, which is a rich source of several lectins, the proteins that bind carbohydrates. Although their function is unclear, they are believed to defend plants against damaging phytopathogenic microorganisms, insects, and predatory animals. Additionally, they serve as crucial metabolic regulators under a variety of stressors. Detection, separation, purification, and characterization of lectins from the Euphorbiaceae family - mostly from the latex of plants - began over 40 years ago. This effort produced over 35 original research papers that were published. However, no systematic review that compiles these published data has been presented yet. This review summarizes and describes several procedures and protocols employed for extraction and purification of lectins belonging to this family. Physicochemical properties and biological activities of the lectins, along with their medicinal and pharmacological properties, have also been analyzed. Additionally, using examples of ricin and ricin agglutinin, we have structurally analyzed characteristics of the lectin known as Ribosome Inactivating Protein Type II (RIP-Type II) that belongs to this family. We anticipate that this review article will offer a useful compendium of information on this important family of lectins, show the scientists involved in lectin research the gaps in our knowledge, and offer insights for future research.


Assuntos
Euphorbiaceae , Ricina , Animais , Ricina/química , Lectinas de Plantas/farmacologia , Látex/química , Plantas
3.
Biochemistry ; 62(22): 3181-3187, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37903428

RESUMO

Monoclonal antibodies, JB4 and SylH3, neutralize ricin toxin (RT) by inhibiting the galactose-specific lectin activity of the B subunit of the toxin (RTB), which is required for cell attachment and entry. It is not immediately apparent how the antibodies accomplish this feat, considering that RTB consists of two globular domains (D1, D2) each divided into three homologous subdomains (α, ß, γ) with the two functional galactosyl-specific carbohydrate recognition domains (CRDs) situated on opposite poles (subdomains 1α and 2γ). Here, we report the X-ray crystal structures of JB4 and SylH3 Fab fragments bound to RTB in the context of RT. The structures revealed that neither Fab obstructed nor induced detectable conformational alterations in subdomains 1α or 2γ. Rather, JB4 and SylH3 Fabs recognize nearly identical epitopes within an ancillary carbohydrate recognition pocket located in subdomain 1ß. Despite limited amino acid sequence similarity between SylH3 and JB4 Fabs, each paratope inserts a Phe side chain from the heavy (H) chain complementarity determining region (CDR3) into the 1ß CRD pocket, resulting in local aromatic stacking interactions that potentially mimic a ligand interaction. Reconciling the fact that stoichiometric amounts of SylH3 and JB4 are sufficient to disarm RTB's lectin activity without evidence of allostery, we propose that subdomain 1ß functions as a "coreceptor" required to stabilize glycan interactions principally mediated by subdomains 1α and 2γ. Further investigation into subdomain 1ß will yield fundamental insights into the large family of R-type lectins and open novel avenues for countermeasures aimed at preventing toxin uptake into vulnerable tissues and cells.


Assuntos
Ricina , Toxinas Biológicas , Ricina/química , Ricina/metabolismo , Anticorpos Monoclonais , Epitopos , Conformação Molecular , Carboidratos
4.
Infect Immun ; 91(11): e0033223, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37877711

RESUMO

Many AB toxins contain an enzymatic A moiety that is anchored to a cell-binding B moiety by a disulfide bridge. After receptor-mediated endocytosis, some AB toxins undergo retrograde transport to the endoplasmic reticulum (ER) where reduction of the disulfide bond occurs. The reduced A subunit then dissociates from the holotoxin and enters the cytosol to alter its cellular target. Intoxication requires A chain separation from the holotoxin, but, for many toxins, it is unclear if reduction alone is sufficient for toxin disassembly. Here, we examined the link between reduction and disassembly for several ER-translocating toxins. We found disassembly of the reduced Escherichia coli heat-labile enterotoxin (Ltx) required an interaction with one specific ER-localized oxidoreductase: protein disulfide isomerase (PDI). In contrast, the reduction and disassembly of ricin toxin (Rtx) and Shiga toxin 1 (Stx1) were coupled events that did not require PDI and could be triggered by reductant alone. PDI-deficient cells accordingly exhibited high resistance to Ltx with continued sensitivity to Rtx and Stx1. The distinct structural organization of each AB toxin thus appears to determine whether holotoxin disassembly occurs spontaneously upon disulfide reduction or requires the additional input of PDI.


Assuntos
Ricina , Ricina/toxicidade , Ricina/química , Ricina/metabolismo , Toxina Shiga I , Isomerases de Dissulfetos de Proteínas/metabolismo , Dissulfetos
5.
J Enzyme Inhib Med Chem ; 38(1): 2219038, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37259593

RESUMO

Ricin toxin A chain (RTA), from Ricinus communis, is a deadly protein that inactivates ribosomes by degrading an adenine residue at position 4324 in 28S rRNA. Recently, we have demonstrated that pterin-7-carboxamides with peptide pendants were potent RTA inhibitors. Among these, N-(pterin-7-carbonyl)glycyl-L-tyrosine (7PCGY) is the most potent RTA inhibitor as a small organic molecule. However, despite this fascinating inhibitory activity, the mode of interaction of 7PCGY with RTA remains elusive. This study aimed to elucidate the factors responsible for the high RTA inhibitory activity of 7PCGY based on X-ray crystallographic analysis. Herein, we report the successfully resolved X-ray crystal structure of 7PCGY/RTA complexes, revealing that the interaction between the phenolic hydroxy group in 7PCGY and Asn78 of RTA through a hydrogen bonding and the conformational change of Tyr80 and Asn122 are responsible for the high RTA inhibitory activity of 7PCGY.


Assuntos
Ricina , Ricina/química , Ricina/genética , Ricina/metabolismo , Pterinas/química , Pterinas/farmacologia , Cristalografia por Raios X , Peptídeos
6.
Gene ; 877: 147547, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286020

RESUMO

Ribosome-inactivating proteins (RIPs) are RNA N-glycosidases that depurinate an adenine residue in the conserved alpha-sarcin/ricin loop (SRL) of rRNA, inhibiting protein synthesis. Previously, we reported the existence of these toxins in insects, whose presence is restricted to mosquitoes from the Culicinae subfamily (e.g., Aedes aegypti) and whiteflies from the Aleyrodidae family (e.g., Bemisia tabaci). Both groups of genes are derived from two independent horizontal gene transfer (HGT) events and are evolving under purifying selection. Here, we report and characterize the occurrence of a third HGT event in the Sciaroidea superfamily, which supports the recurrent acquisition of RIP genes by insects. Transcriptomic experiments, available in databases, allowed us to describe the temporal and spatial expression profiles for these foreign genes in these organisms. Furthermore, we found that RIP expression is induced after infection with pathogens and provided, for the first time, transcriptomic evidence of parasite SRL depurination. This evidence suggests a possible role of these foreign genes as immune effectors in insects.


Assuntos
Hemípteros , Ricina , Animais , Proteínas Inativadoras de Ribossomos/genética , Proteínas Inativadoras de Ribossomos/metabolismo , Transferência Genética Horizontal , Insetos/genética , Biossíntese de Proteínas , RNA Ribossômico , Ricina/química , Ricina/genética , Ricina/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Proteínas de Plantas/genética
7.
Sud Med Ekspert ; 66(3): 34-39, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37192457

RESUMO

THE AIM OF THE STUDY: Is to suggest the method of ricin determination in biological liquids during forensic medical and chemicotoxicological examination. This research describes the optimal conditions of sample processing of biological liquids, allowing to extract the components (ricinine and ricinoleic acid) of castor seeds. The recommended analysis conditions allow to perform research for 15 minutes by high resolution mass spectrometry method combined with high-value liquid chromatography on a chromato-mass spectrometer to detect ricinine and ricinoleic acid. The chromatographic (retention time) and mass-spectrometric parameters (mass spectra) were established for the exact high-quality determination of ricinine and ricinoleic acid.


Assuntos
Ricina , Ricina/toxicidade , Ricina/análise , Ricina/química , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Medicina Legal
8.
PLoS One ; 17(12): e0277770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36508422

RESUMO

The Ricin toxin A chain (RTA), which depurinates an adenine base at a specific region of the ribosome leading to death, has two adjacent specificity pockets in its active site. Based on this structural information, many attempts have been made to develop small-molecule RTA inhibitors that simultaneously block the two pockets. However, no attempt has been successful. In the present study, we synthesized pterin-7-carboxamides with tripeptide pendants and found that one of them interacts with both pockets simultaneously to exhibit good RTA inhibitory activity. X-ray crystallographic analysis of the RTA crystal with the new inhibitor revealed that the conformational change of Tyr80 is an important factor that allows the inhibitors to plug the two pockets simultaneously.


Assuntos
Ricina , Ricina/química , Pterinas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ribossomos/metabolismo
9.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076961

RESUMO

Plukenetia volubilis is a highly promising plant with high nutritional and economic values. In our previous studies, the expression levels of ricin encoded transcripts were the highest in the maturation stage of P. volubilis seeds. The present study investigated the transcriptome and proteome profiles of seeds at two developmental stages (Pv-1 and Pv-2) using RNA-Seq and iTRAQ technologies. A total of 53,224 unigenes and 6026 proteins were identified, with functional enrichment analyses, including GO, KEGG, and KOG annotations. At two development stages of P. volubilis seeds, 8815 unique differentially expressed genes (DEGs) and 4983 unique differentially abundant proteins (DAPs) were identified. Omics-based association analysis showed that ribosome-inactivating protein (RIP) transcripts had the highest expression and abundance levels in Pv-2, and those DEGs/DAPs of RIPs in the GO category were involved in hydrolase activity. Furthermore, 21 RIP genes and their corresponding amino acid sequences were obtained from libraries produced with transcriptome analysis. The analysis of physicochemical properties showed that 21 RIPs of P. volubilis contained ricin, the ricin_B_lectin domain, or RIP domains and could be divided into three subfamilies, with the largest number for type II RIPs. The expression patterns of 10 RIP genes indicated that they were mostly highly expressed in Pv-2 and 4 transcripts encoding ricin_B_like lectins had very low expression levels during the seed development of P. volubilis. This finding would represent valuable evidence for the safety of oil production from P. volubilis for human consumption. It is also notable that the expression level of the Unigene0030485 encoding type I RIP was the highest in roots, which would be related to the antiviral activity of RIPs. This study provides a comprehensive analysis of the physicochemical properties and expression patterns of RIPs in different organs of P. volubilis and lays a theoretical foundation for further research and utilization of RIPs in P. volubilis.


Assuntos
Proteínas Inativadoras de Ribossomos , Ricina , Humanos , Proteínas de Plantas/química , Proteoma/metabolismo , Proteínas Inativadoras de Ribossomos/genética , Ricina/química , Sementes/metabolismo , Transcriptoma
10.
Biochem Biophys Res Commun ; 627: 1-4, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998389

RESUMO

Ricin toxin A-chain (RTA), a toxic protein from Ricinus communis, inactivates ribosomes to induce toxicity. The active site of RTA consists of two binding pockets. Many studies have focused on developing RTA inhibitors that can simultaneously bind to these critical pockets; however, almost all the inhibitors developed so far interact with only one pocket. In the present study, we discovered that pterin-7-carboxamides with aromatic l-amino acid pendants interacted with the active site of the enzyme in a 2-to-1 mode, where one inhibitor molecule bound to the primary pocket and the second one entered the secondary pocket in the active site of RTA. X-ray crystallographic analysis of inhibitor/RTA complexes revealed that the conformational changes of Tyr80 and Asn122 in RTA were critical for triggering the entry of inhibitor molecules into the secondary pocket of the RTA active site.


Assuntos
Ricina , Cristalografia por Raios X , Ribossomos/metabolismo , Ricina/química , Ricina/metabolismo , Ricina/toxicidade
11.
Immunohorizons ; 6(6): 324-333, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697476

RESUMO

Inhalation of ricin toxin (RT) elicits profuse inflammation and cell death within the upper and lower airways, ultimately culminating in acute respiratory distress syndrome. We previously reported that the effects of pulmonary RT exposure in mice are nullified by intranasal administration of an mAb mixture consisting of PB10, directed against ricin's enzymatic subunit (RTA), and SylH3, directed against ricin's binding subunit (RTB). We now report that delivery of PB10 and SylH3 as an RT-mAb immune complex (RIC) to mice by the intranasal or i.p. routes stimulates the rapid onset of RT-specific serum IgG that persists for months. RIC administration also induced high-titer, toxin-neutralizing Abs. Moreover, RIC-treated mice were immune to a subsequent 5 × LD50 RT challenge on days 30 or 90. Intranasal RIC administration was more effective than i.p. delivery at rendering mice immune to intranasal RT exposure. Finally, we found that the onset of RT-specific serum IgG following RIC delivery was independent of FcγR engagement, as revealed through FcγR knockout mice and RICs generated with PB10/SylH3 LALA (leucine to alanine) derivatives. In conclusion, a single dose of RICs given intranasally to mice was sufficient to stimulate durable protective immunity to RT by an FcγR-independent pathway.


Assuntos
Ricina , Animais , Anticorpos Monoclonais , Complexo Antígeno-Anticorpo , Imunoglobulina G , Camundongos , Receptores de IgG , Ricina/química , Ricina/metabolismo
12.
J Biol Chem ; 298(4): 101742, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182523

RESUMO

During ricin intoxication in mammalian cells, ricin's enzymatic (RTA) and binding (RTB) subunits disassociate in the endoplasmic reticulum. RTA is then translocated into the cytoplasm where, by virtue of its ability to depurinate a conserved residue within the sarcin-ricin loop (SRL) of 28S rRNA, it functions as a ribosome-inactivating protein. It has been proposed that recruitment of RTA to the SRL is facilitated by ribosomal P-stalk proteins, whose C-terminal domains interact with a cavity on RTA normally masked by RTB; however, evidence that this interaction is critical for RTA activity within cells is lacking. Here, we characterized a collection of single-domain antibodies (VHHs) whose epitopes overlap with the P-stalk binding pocket on RTA. The crystal structures of three such VHHs (V9E1, V9F9, and V9B2) in complex with RTA revealed not only occlusion of the ribosomal P-stalk binding pocket but also structural mimicry of C-terminal domain peptides by complementarity-determining region 3. In vitro assays confirmed that these VHHs block RTA-P-stalk peptide interactions and protect ribosomes from depurination. Moreover, when expressed as "intrabodies," these VHHs rendered cells resistant to ricin intoxication. One VHH (V9F6), whose epitope was structurally determined to be immediately adjacent to the P-stalk binding pocket, was unable to neutralize ricin within cells or protect ribosomes from RTA in vitro. These findings are consistent with the recruitment of RTA to the SRL by ribosomal P-stalk proteins as a requisite event in ricin-induced ribosome inactivation.


Assuntos
Proteínas Ribossômicas , Ricina , Anticorpos de Domínio Único , Animais , Epitopos/metabolismo , Mamíferos/metabolismo , Peptídeos/metabolismo , RNA Ribossômico 28S/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ricina/química , Anticorpos de Domínio Único/metabolismo
13.
J Biomol Struct Dyn ; 40(12): 5427-5445, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33526002

RESUMO

Ricin is a potent toxin derived from the castor bean plant and comprises two subunits, RTA and RTB. Because of its cytotoxicity, ricin has alarmed world authorities for its potential use as a chemical weapon. Ricin also affects castor bean agribusiness, given the risk of animal and human poisoning. Over the years, many groups attempted to propose small-molecules that bind to the RTA active site, the catalytic chain. Despite such efforts, there is still no effective countermeasure against ricin poisoning. The computational study carried out in the present work renews the discussion about small-molecules that may inhibit this toxin. Here, a structure-based virtual screening protocol capable of discerning active RTA inhibitors from inactive ones was performed to screen over 2 million compounds from the ZINC database to find novel scaffolds that strongly bind into the active site of the RTA. Besides, a novel score method based on ligand undocking force profiles and semi-empirical quantum chemical calculations provided insights into the rescore of docking poses. Summing up, the filtering steps pointed out seven main compounds, with the SCF00-451 as a promising candidate to inhibit the killing activity of such potent phytotoxin.


Assuntos
Ricina , Toxinas Biológicas , Animais , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ricina/química , Ricina/metabolismo , Ricina/farmacologia
14.
J Biomol Struct Dyn ; 40(12): 5309-5319, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33410376

RESUMO

Ricin is a potent cytotoxin with no available antidote. Its catalytic subunit, RTA, damages the ribosomal RNA (rRNA) of eukaryotic cells, preventing protein synthesis and eventually leading to cell death. The combination between easiness of obtention and high toxicity turns ricin into a potential weapon for terrorist attacks, urging the need of discovering effective antidotes. On this context, we used computational techniques, in order to identify potential ricin inhibitors among approved drugs. Two libraries were screened by two different docking algorithms, followed by molecular dynamics simulations and MM-PBSA calculations in order to corroborate the docking results. Three drugs were identified as potential ricin inhibitors: deferoxamine, leucovorin and plazomicin. Our calculations showed that these compounds were able to, simultaneously, form hydrogen bonds with residues of the catalytic site and the secondary binding site of RTA, qualifying as potential antidotes against intoxication by ricin.Communicated by Ramaswamy H. Sarma.


Assuntos
Ricina , Antídotos , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ricina/química , Ricina/metabolismo , Ricina/farmacologia
15.
Toxins (Basel) ; 13(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34941700

RESUMO

Kirkiin is a new type 2 ribosome-inactivating protein (RIP) purified from the caudex of Adenia kirkii with a cytotoxicity compared to that of stenodactylin. The high toxicity of RIPs from Adenia genus plants makes them interesting tools for biotechnology and therapeutic applications, particularly in cancer therapy. The complete amino acid sequence and 3D structure prediction of kirkiin are here reported. Gene sequence analysis revealed that kirkiin is encoded by a 1572 bp open reading frame, corresponding to 524 amino acid residues, without introns. The amino acid sequence analysis showed a high degree of identity with other Adenia RIPs. The 3D structure of kirkiin preserves the overall folding of type 2 RIPs. The key amino acids of the active site, described for ricin and other RIPs, are also conserved in the kirkiin A chain. Sugar affinity studies and docking experiments revealed that both the 1α and 2γ sites of the kirkiin B chain exhibit binding activity toward lactose and D-galactose, being lower than ricin. The replacement of His246 in the kirkiin 2γ site instead of Tyr248 in ricin causes a different structure arrangement that could explain the lower sugar affinity of kirkiin with respect to ricin.


Assuntos
Sequência de Aminoácidos , Sítios de Ligação , Proteínas Inativadoras de Ribossomos Tipo 2/química , Proteínas Inativadoras de Ribossomos Tipo 2/genética , Domínio Catalítico , Simulação de Acoplamento Molecular , Passifloraceae/química , Passifloraceae/genética , Proteínas de Plantas/química , Domínios Proteicos , Ricina/química , Análise de Sequência de DNA
16.
mSphere ; 6(6): e0075021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34730377

RESUMO

The development of vaccines against biothreat toxins like ricin (RT) is considered an integral component of the U.S. national security efforts. RiVax is a thermostable, lyophilized RT subunit vaccine adsorbed to aluminum salt adjuvant intended for use by military personnel and first responders. Phase 1 studies indicated that RiVax is safe and immunogenic, while a three-dose intramuscular vaccination regimen in nonhuman primates elicited protection against lethal dose RT challenge by aerosol. Here, we investigated, in a mouse model, the durability of RiVax-induced antibody responses and corresponding immunity to lethal dose RT challenge. Groups of mice were subcutaneously administered 3 or 1 µg of RiVax on days 0 and 21 and challenged with 10× 50% lethal dose (LD50) RT by injection at six different intervals over the course of 12 months. Serum antibody titers and epitope-specific competition assays were determined prior to each challenge. We report that the two-dose, 3-µg regimen conferred near-complete protection against RT challenge on day 35 and complete protection thereafter (challenge days 65, 95, 125, 245, and 365). The two-dose, 3-µg regimen was superior to the 1-µg regimen as revealed by slight differences in survival and morbidity scores (e.g., hypoglycemia, weight loss) on challenge days 35 and 365. In separate experiments, a single 3-µg RiVax vaccination proved only marginally effective at eliciting protective immunity to RT, underscoring the necessity of a prime-boost regimen to achieve full and long-lasting protection against RT. IMPORTANCE Ricin toxin (RT) is a notorious biothreat, as exposure to even trace amounts via injection or inhalation can induce organ failure and death within a matter of hours. In this study, we advance the preclinical testing of a candidate RT vaccine known as RiVax. RiVax is a recombinant nontoxic derivative of RT's enzymatic subunit that has been evaluated for safety in phase I clinical trials and efficacy in a variety of animal models. We demonstrate that two doses of RiVax are sufficient to protect mice from lethal dose RT challenge for up to 1 year. We describe kinetics and other immune parameters of the antibody response to RiVax and discuss how these immune factors may translate to humans.


Assuntos
Epitopos/química , Ricina/química , Vacinas de Subunidades/administração & dosagem , Vacinas/administração & dosagem , Aerossóis , Animais , Bioterrorismo , Feminino , Liofilização , Injeções Intramusculares , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos BALB C
17.
Anal Biochem ; 631: 114364, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34487718

RESUMO

Ricin is a toxic protein derived from the castor bean plant (Ricinus communis) and has potential for bioterrorism or criminal use. Therefore, sensitive and rapid analytical methods are needed for its confirmatory detection in environmental samples. Our laboratory previously reported on the development of a confirmatory method to detect ricin involving antibody capture of ricin followed by mass spectrometric detection of ricin's enzymatic activity and of tryptic fragments unique to ricin. Here, we describe a novel ricin capture method of magnetic beads coated with 4-aminophenyl-1-thiol-ß-galactopyranoside, using ricin's lectin characteristics. The assay has been adapted for use on a simple, benchtop MALDI-TOF MS mass spectrometer common in clinical microbiology laboratories. Validation of the novel assay includes establishment of a limit of detection, and an examination of assay selectivity. The limit of detection of the enzymatic activity method is 8 ng/mL and 500 ng/mL for the confirmatory tryptic fragment assay. The assay is highly selective with no cross-reactivity from near neighbors and highly specific with a panel of 19 cultivars all testing positive. Additionally, there were no interferences found during testing of a panel of white powders. This allows for a confirmatory detection method for ricin in laboratories lacking expensive, sophisticated mass spectrometers.


Assuntos
Microesferas , Ricina/análise , Ricina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Anticorpos/química , Contaminação de Alimentos/análise , Galactose/química , Lactase/química , Limite de Detecção , Fenômenos Magnéticos , Leite/química , Extratos Vegetais/análise , Pós/análise , Pós/química , Reprodutibilidade dos Testes , Ricina/metabolismo , Ricinus/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Tripsina/química
18.
FEBS Lett ; 595(17): 2221-2236, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328639

RESUMO

The ribosome is subjected to post-translational modifications, including phosphorylation, that affect its biological activity. Among ribosomal elements, the P-proteins undergo phosphorylation within the C terminus, the element which interacts with trGTPases or ribosome-inactivating proteins (RIPs); however, the role of phosphorylation has never been elucidated. Here, we probed the function of phosphorylation on the interaction of P-proteins with RIPs using the ribosomal P1-P2 dimer. We determined the kinetic parameters of the interaction with the toxins using biolayer interferometry and microscale thermophoresis. The results present the first mechanistic insight into the function of P-protein phosphorylation, showing that introduction of a negative charge into the C terminus of P1-P2 proteins promotes α-helix formation and decreases the affinity of the P-proteins for the RIPs.


Assuntos
Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Toxinas Biológicas/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fosfoproteínas/genética , Fosforilação , Domínios Proteicos , Proteínas Ribossômicas/genética , Ricina/química , Ricina/metabolismo , Serina/metabolismo , Toxinas Biológicas/química , Tricosantina/química , Tricosantina/metabolismo
19.
J Mol Biol ; 433(15): 167086, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34089718

RESUMO

Ricin toxin kills mammalian cells with notorious efficiency. The toxin's B subunit (RTB) is a Gal/GalNAc-specific lectin that attaches to cell surfaces and promotes retrograde transport of ricin's A subunit (RTA) to the trans Golgi network (TGN) and endoplasmic reticulum (ER). RTA is liberated from RTB in the ER and translocated into the cell cytoplasm, where it functions as a ribosome-inactivating protein. While antibodies against ricin's individual subunits have been reported, we now describe seven alpaca-derived, single-domain antibodies (VHHs) that span the RTA-RTB interface, including four Tier 1 VHHs with IC50 values <1 nM. Crystal structures of each VHH bound to native ricin holotoxin revealed three different binding modes, based on contact with RTA's F-G loop (mode 1), RTB's subdomain 2γ (mode 2) or both (mode 3). VHHs in modes 2 and 3 were highly effective at blocking ricin attachment to HeLa cells and immobilized asialofetuin, due to framework residues (FR3) that occupied the 2γ Gal/GalNAc-binding pocket and mimic ligand. The four Tier 1 VHHs also interfered with intracellular functions of RTB, as they neutralized ricin in a post-attachment cytotoxicity assay (e.g., the toxin was bound to cell surfaces before antibody addition) and reduced the efficiency of toxin transport to the TGN. We conclude that the RTA-RTB interface is a target of potent toxin-neutralizing antibodies that interfere with both extracellular and intracellular events in ricin's cytotoxic pathway.


Assuntos
Anticorpos Neutralizantes/farmacologia , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Ricina/química , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica , Ricina/imunologia , Anticorpos de Domínio Único/farmacologia , Células THP-1 , Células Vero
20.
Nat Microbiol ; 6(3): 313-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462434

RESUMO

Fungi of the order Mucorales cause mucormycosis, a lethal infection with an incompletely understood pathogenesis. We demonstrate that Mucorales fungi produce a toxin, which plays a central role in virulence. Polyclonal antibodies against this toxin inhibit its ability to damage human cells in vitro and prevent hypovolemic shock, organ necrosis and death in mice with mucormycosis. Inhibition of the toxin in Rhizopus delemar through RNA interference compromises the ability of the fungus to damage host cells and attenuates virulence in mice. This 17 kDa toxin has structural and functional features of the plant toxin ricin, including the ability to inhibit protein synthesis through its N-glycosylase activity, the existence of a motif that mediates vascular leak and a lectin sequence. Antibodies against the toxin inhibit R. delemar- or toxin-mediated vascular permeability in vitro and cross react with ricin. A monoclonal anti-ricin B chain antibody binds to the toxin and also inhibits its ability to cause vascular permeability. Therefore, we propose the name 'mucoricin' for this toxin. Not only is mucoricin important in the pathogenesis of mucormycosis but our data suggest that a ricin-like toxin is produced by organisms beyond the plant and bacterial kingdoms. Importantly, mucoricin should be a promising therapeutic target.


Assuntos
Mucorales/patogenicidade , Mucormicose/patologia , Micotoxinas/metabolismo , Ricina/metabolismo , Animais , Antitoxinas/imunologia , Antitoxinas/farmacologia , Antitoxinas/uso terapêutico , Apoptose , Permeabilidade Capilar , Células Cultivadas , Reações Cruzadas , Humanos , Hifas/química , Hifas/patogenicidade , Lectinas/metabolismo , Camundongos , Mucorales/química , Mucorales/classificação , Mucorales/genética , Mucormicose/microbiologia , Mucormicose/prevenção & controle , Micotoxinas/química , Micotoxinas/genética , Micotoxinas/imunologia , Necrose , Interferência de RNA , Rhizopus/química , Rhizopus/genética , Rhizopus/patogenicidade , Proteínas Inativadoras de Ribossomos/metabolismo , Ricina/química , Ricina/imunologia , Virulência/efeitos dos fármacos , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...